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ABSTRACT
Braess’s Paradox is the counterintuitive but well-known fact
that removing edges from a network with “selfish routing”
can decrease the latency incurred by traffic in an equilibrium
flow. Despite the large amount of research motivated by
Braess’s Paradox since its discovery in 1968, little is known
about whether it is a common real-world phenomenon, or a
mere theoretical curiosity.

In this paper, we show that Braess’s Paradox is likely to
occur in a natural random network model. More precisely,
with high probability, (as the number of vertices goes to
infinity), there is a traffic rate and a set of edges whose
removal improves the latency of traffic in an equilibrium
flow by a constant factor. Our proof approach is robust and
shows that the “global” behavior of an equilibrium flow in a
large random network is similar to that in Braess’s original
four-node example.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Algorithms, Economics, Theory

Keywords
Braess’s Paradox, selfish routing, random graphs

1. INTRODUCTION
Motivated largely by algorithmic issues in the Internet,

there has been a tremendous surge of research activity on
the interface of network optimization and economics over the
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Figure 1: Braess’s Paradox

past five years. Much of this recent work is motivated by the
fact that well-studied economic problems become more dif-
ficult to solve once computational constraints are imposed
(e.g. [11, 25]). The converse, however, holds equally true:
classical results of network optimization can fail in the pres-
ence of additional economic constraints. There is perhaps no
starker illustration of this fact than the (in)famous Braess’s
Paradox [5].

1.1 Braess’s Paradox
Consider the network shown in Figure 1. Assume that

a large population of small network users travels from the
vertex s to the vertex t, with each network user choosing an
s-t path independently and selfishly (to minimize the delay
experienced). Each edge of the network is labeled with its
latency function, which describes the delay incurred by traf-
fic on the link as a function of the amount of traffic that uses
the link. We assume that the traffic rate—the total amount
of traffic in the network—is 1. We also assume that traffic
in the network reaches an “equilibrium flow”, the natural
outcome of “selfish routing” in which all traffic simultane-
ously travels along minimum-latency paths. In the (unique)
equilibrium flow, all traffic uses the route s → v → w → t
and experiences two units of latency. On the other hand, if
we remove the edge (v, w), then in the ensuing equilibrium
flow half of the traffic uses each of the routes s → v → t and
s → w → t. In this equilibrium, all network users experience
latency 3/2 and are thus better off than before.

In classical network flow, reducing the number of feasible
solutions (e.g., by removing an edge of a network) trivially
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only degrades the optimal objective function value (for any
objective function). Braess’s Paradox shows that even this
simple fact no longer holds for equilibrium flows in networks:
removing links can improve the performance of the equilib-
rium flow of the network.

Since its discovery in 1968 [5], Braess’s Paradox has gen-
erated an enormous amount of subsequent research in the
transportation, networking, and theoretical computer sci-
ence communities (see [29] and Subsection 1.3 below). How-
ever, remarkably little is known about whether Braess’s Para-
dox is a common real-world phenomenon, or a mere theo-
retical curiosity. Differentiating between these two possi-
bilities is clearly an important issue. For example, it is
well known that equilibrium flows arise not only in net-
works with “source routing”—networks where each end user
is assumed to possess knowledge of the entire network and
the ability to choose an end-to-end path for its traffic—but
also in networks that use a distributed delay-based rout-
ing protocol to route traffic, such as the OSPF protocol
with delay as the edge metric (see e.g. [3, 15]). Largely
motivated by this fact, a recent sequence of papers in the
networking literature [1, 9, 19, 20, 21] has studied strate-
gies that allocate additional capacity to a network without
causing Braess’s Paradox to arise—intuitively, without over-
provisioning a counterproductive “cross-edge” like the edge
(v, w) in Figure 1. If Braess’s Paradox is a rare event in self-
ish routing networks, then such strategies might be largely
superfluous for real-world networks. If Braess’s Paradox is
a widespread phenomenon, however, then the problem of
adding capacity (or new edges) to a selfish routing network
must be treated with care.

In summary, the following basic but poorly understood
question motivates our work:

Is Braess’s Paradox a “pathological” example, or a
pervasive phenomenon in selfish routing networks?

1.2 Our Results
Qualitatively, our main result is the following: in a nat-

ural random network model, Braess’s Paradox occurs with
high probability. To state our results formally, define the
Braess ratio of a network as the largest factor by which the
removal of one or more edges can improve the latency of
traffic in an equilibrium flow. For example, the Braess ratio
of the network in Figure 1 is 4/3. For our model of random
networks, we prove the following.

(R1) With high probability as n → ∞, there is a choice
of traffic rate such that the Braess ratio of a random
network is strictly greater than 1.

Here and throughout this paper, “with high probability”
means with probability tending to 1 as n → ∞. Thus
Braess’s Paradox is in fact a fairly common occurrence in
large selfish routing networks, rather than an isolated anomaly.

In fact, we prove a significantly stronger result, as follows.

(R2) There is a constant ρ > 1 such that, with high proba-
bility as n → ∞, there is a choice of traffic rate such
that the Braess ratio of a random network is at least
ρ.

For each fixed number n of network vertices, the probabili-
ties in (R1) and (R2) are with respect to the random choice

of the graph and of the edge latency functions. See Sub-
section 2.2 for further discussion of these probability distri-
butions. The traffic rate is not random and is chosen (as a
function of n) so that it scales appropriately with the “vol-
ume” of the network. Some such scaling of the traffic rate
appears to be necessary for our results; see Remark 4.4 for
further discussion of this point.

The first result (R1) already answers our motivating ques-
tion and indicates that Braess’s Paradox is widespread: in
almost all networks, for an appropriate traffic rate, there is
a set of edges whose removal improves the latency of traffic
in an equilibrium flow.

The second result (R2) is stronger in several respects.
Most obviously, it precludes dismissing the first result on
the grounds that removing edges might not significantly de-
crease the latency of traffic in an equilibrium flow. On the
contrary, removing a set of edges can typically improve this
latency by a constant factor (as n → ∞). Moreover, for suf-
ficiently simple models of random networks, we can quantify
this constant. In fact, we will show that in a natural model
with affine latency functions—where the worst-case Braess
ratio is 4/3 [30]—a random network often has a Braess ratio
that is arbitrarily close to this worst case.

Another important aspect of the second result (R2) is that
proving it seems intrinsically to require an understanding of
the “global” structure of a random network. In particu-
lar, our proof of (R2) will show, in a precise sense, that
a random network essentially behaves like a slight general-
ization of the network in Figure 1. The first result (R1),
by contrast, might plausibly be proved using only “local”
arguments. For example, one could try to prove (R1) as
follows: networks similar to that in Figure 1 occur suffi-
ciently frequently as subnetworks in a random network, and
perhaps under some additional (frequently met) conditions,
removing the “cross-edge” of one or more such subnetworks
improves the equilibrium flow. (It is not clear, however, that
such a proof approach can be made to work; we do not know
how to prove (R1) along such lines.) The second result (R2),
which proves that a coordinated removal of a large fraction
of a network’s edges improves the latency of an equilibrium
flow by a constant factor, seems impervious to arguments
that do not explicitly consider the global behavior of the
network.

1.3 Related Work
Several previous works have shed some understanding on

the prevalence of Braess’s Paradox. On the empirical side,
there has been a small amount of anecdotal evidence in the
transportation science literature suggesting that Braess’s
Paradox has occurred in certain road networks [12, 18, 24].

On the theoretical side, a number of papers have explored
the ranges of parameters under which Braess’s Paradox can
occur; most of these, however, confined their attention to
the four-node network of Figure 1 [13, 17, 26, 27] or limited
generalizations [14]. Indeed, it was only recently discovered
that Braess’s Paradox can be more severe in large, complex
networks than in Braess’s original four-node example [23,
28].

Most relevant to the present work are several papers in the
transportation science literature that attempt to give ana-
lytical conditions that characterize whether or not a given
edge (or path of edges) is improving, in the sense that its
removal will improve the equilibrium flow in the network.
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Steinberg and Zangwill [31] and Taguchi [32] gave the ear-
liest (independent and incomparable) results along these
lines; the former paper was subsequently generalized by
Dafermos and Nagurney [7]. Such analytical characteri-
zations reduce the problem of bounding the frequency of
Braess’s Paradox in a random network model to the (possi-
bly easier) problem of bounding the likelihood that a certain
analytical condition holds. This potential application was
explicitly pointed out by Steinberg and Zangwill [31], who
also noted that the form of their analytical characterization
of improving edges suggested that Braess’s Paradox should
be common rather than rare.

The approach of [7, 31, 32] suffers from several drawbacks,
however. First, the ambitious goal of analytically character-
izing improving edges led to strong extra hypotheses in all
of these papers. In particular, the analyses in [7, 31, 32] all
assume the following when characterizing whether or not an
edge e is improving: removing the edge e does not cause new
s-t paths to carry traffic. Put differently, the assumption is
that while removing the edge might increase the amount of
traffic on other paths, it should not fundamentally change
the traffic pattern. This assumption clearly fails e.g. in the
network of Figure 1, and it is not clear that it typically holds
in large random networks. It is singled out by Steinberg and
Zangwill [31, §7] as the key open issue in their analysis.

Second, even when this additional hypothesis holds, it is
not clear that analyzing the probability that the (somewhat
complex) conditions of [7, 31, 32] hold is more tractable than
directly analyzing the probability that Braess’s Paradox oc-
curs. While the condition of Steinberg and Zangwill [31]
suggests that this probability could be large under the above
hypothesis—it essentially states that whether or not a given
edge is improving is governed by the parity of a seemingly
unrelated combinatorial quantity—rigorously analyzing this
condition in random graphs does not appear to be easy. In
particular, at no point do Steinberg and Zangwill [31] explic-
itly define a probability measure over networks and analyze
the probability that a given edge is improving.

Third, all of the above characterizations consider only the
effects of removing a single edge of a network. Even under
strong additional assumptions, this “local” approach seems
incapable of proving an analogue of our second result (R2),
which shows that the coordinated deletion of a large set of
edges yields a constant-factor improvement in equilibrium
flow latency.

In summary, we believe the present paper to be the first
to explicitly define a natural probability distribution over
selfish routing networks and analyze the probability that
Braess’s Paradox occurs, and the first to consider the simul-
taneous deletion of multiple edges or to quantify the Braess
ratio in large random networks.

2. THE MODEL

2.1 Selfish Routing Networks
We follow the notation and conventions of Roughgarden

and Tardos [30]. We study a single-commodity flow network,
described by a graph G = (V, E) with a source vertex s and
a sink vertex t. We assume for convenience that all graphs
are undirected, although allowing directed graphs would not
affect our results in any significant way. We denote the set
of simple s-t paths by P , and we assume that this set is
nonempty. A flow f is a nonnegative vector, indexed by

P . For a fixed flow f we define fe =
P

P∈P:e∈P fP as the
amount of traffic using edge e en route from s to t. With
respect to a finite and positive traffic rate r, a flow f is said
to be feasible if

P
P∈P fP = r.

We model congestion in the network by assigning each
edge e a nonnegative, continuous, nondecreasing latency func-
tion �e that describes the delay incurred by traffic on e
as a function of the edge congestion fe. The latency of
a path P in G with respect to a flow f is then given by
�P (f) =

P
e∈P �e(fe). We call a triple (G, r, �) an instance.

In Section 1 we informally discussed equilibrium flows; we
now make this notion precise.

Definition 2.1 ([33]) A flow f feasible for (G, r, �) is at
Nash equilibrium or is a Nash flow if for all P1, P2 ∈ P with
fP1 > 0, �P1(f) ≤ �P2(f).

Thus all paths in use by a flow at Nash equilibrium have
equal latency. As is well known, every selfish routing net-
work admits at least one Nash flow [2]. Moreover, Nash
flows are “essentially unique” in the sense that the latency
incurred by traffic is the same in every Nash flow of a net-
work [2]. We use the notation L(G, r, �) to denote the com-
mon latency of all traffic in a flow at Nash equilibrium for
the instance (G, r, �).

The following (well-known) characterization of Nash flows
will be instrumental in our proofs. It follows easily from the
fact that a flow at Nash equilibrium routes traffic only on
minimum-latency paths.

Proposition 2.2 ([28]) Let f be a flow feasible for (G, r,
�). For a vertex v in G, let d(v) denote the length, with
respect to edge lengths �e(fe), of a shortest s-v path in G.
Then d(w) − d(v) ≤ �e(fe) for all edges e = (v, w), and f
is at Nash equilibrium if and only if equality holds whenever
fe > 0.

We will also use the intuitive but non-obvious fact that
the latency L(G, r, �) of traffic in a Nash flow is continuous
and non-decreasing in the traffic rate r.

Proposition 2.3 ([16, 22]) For every fixed network G and
latency functions �, the value L(G, r, �) is continuous and
nondecreasing in r.

2.2 Models of Random Networks
In order to rigorously claim that Braess’s Paradox is or

is not likely to occur, we must fix a model of random self-
ish routing networks. Such a model contains (at least) two
ingredients: a probability distribution over graphs and a
probability distribution over edge latency functions. While
the field of random graph theory (e.g. [4]) provides a vast ar-
ray of possible definitions of and analytical tools for random
graphs, choices for the definition of a “random latency func-
tion” are less obvious. In this paper, we make the following
two basic modeling assumptions.

(1) The underlying graph G is distributed according to
the standard Erdös-Renyi G(n, p) model [10]. Pre-
cisely, for a fixed number n ≥ 2 of vertices, we assume
that each possible (undirected) edge is present inde-
pendently with probability p. We also assume that
p = Ω(n−1/2+ε) for some ε > 0. The source s and
the sink t are chosen randomly or arbitrarily. Finally,
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to avoid degenerate cases, we assume that there is no
direct (s, t) edge.

(2) Latency functions are affine—of the form �(x) = ax+b
with a, b ≥ 0. (Such functions are often called linear
latency functions.)

We make the first assumption simply because the Erdös-
Renyi model is the most popular and widely studied def-
inition of a random graph. Our proof techniques do not
crucially use detailed properties of this model, however, and
we suspect that they are general enough to apply to every
random graph model where a typical graph is “sufficiently
dense and uniform”. We defer rigorous analysis of this sus-
picion to future work. Whether or not our results carry
over to models of sparse or non-uniform random graphs is
an interesting open question.

Our motivation for assumption (2) is that affine latency
functions are, informally, the most benign functions that al-
low Braess’s Paradox to occur. More precisely, in networks
with only constant latency functions or with only affine la-
tency functions with zero constant terms, deleting edges can
only increase the cost of a flow at Nash equilibrium [8]. On
the other hand, allowing nonlinear latency functions only in-
creases the worst-case severity of Braess’s Paradox [28]. For
example, the network of Figure 1 has the largest-possible
Braess ratio among all networks with affine latency func-
tions [30], but larger Braess ratios are possible in networks
with nonlinear latency functions [28].

Since our goal is to lower bound both the frequency and
severity of Braess’s Paradox in random networks, our re-
striction to the relatively benign class of affine latency func-
tions is well motivated. Moreover, it will be intuitively clear
that our analysis approach is robust enough to extend, with
some work, to natural models of random nonlinear latency
functions.

Even for affine latency functions, there are many possi-
ble definitions of a random latency function. We will focus
most of our attention (Section 4) on the independent coeffi-
cients model. In this model, we assume that there are two
fixed distributions A and B, and each edge is independently
given a latency function �(x) = ax + b, where a and b are
drawn independently from A and B, respectively. We prove
our main result for this model—that with high probability,
removing some set of edges improves the latency of a Nash
flow of a random network by a constant factor—under mild
assumptions on the distributions A and B.

We also consider what we call the 1/x model, where each
edge present in the graph (independently) has the latency
function �(x) = x with probability q and the latency func-
tion �(x) = 1 with probability 1 − q. Note that this model
is not a special case of the independent coefficients model,
since there is now (complete) dependence between the a-
and b-coefficients of the latency function of an edge. While
stylized, this model nevertheless serves several purposes: it
shows that independence of coefficients is not essential for
our earlier results; it provides a clean example of how our
high-level proof approach can be adapted to different ran-
dom network models; and we can obtain a precise bound on
the Braess ratio of a random network in this model (as a
function of the parameters p and q). In particular, for suf-
ficiently small p and q, we prove that a random network in
this model is essentially a worst-possible example of Braess’s
Paradox (among networks with affine latency functions).

3. HIGH-LEVEL PROOF APPROACH
In this section we describe our high-level proof approach.

Assume for simplicity that the random graph parameter p is
bounded below by a constant; this is for the sake of intuition
only and is not required for our results.

At the highest level, our plan is to show that a random
network has a “global” structure similar to that of the four-
node network of Figure 1. To make this more precise, re-
call the distance labels of Proposition 2.2: for an instance
(G, r, �), let d(v) denote the length of a shortest s-v path
with respect to the edge latencies induced by a Nash flow
of (G, r, �). In the network of Figure 1, we have d(s) = 0,
d(v) = d(w) = 1, and d(t) = 2. After removing the edge
(v, w), the distance labels become d(s) = 0, d(v) = 1/2,
d(w) = 1, and d(t) = 3/2.

Now consider a large random graph G, under some ran-
dom network model. We will choose the traffic rate to
scale appropriately with the size of G and consider a flow
at Nash equilibrium in G. Ignore vertices unused by this
Nash flow and label the other vertices v1, . . . , vk so that
d(v1) ≤ · · · ≤ d(vk). Proposition 2.2 implies that, without
loss of generality, s = v1 and t = vk. A key step in our
analysis, which we call the “Delta Lemma”, is to show that
d(v2) ≈ d(vk−1), in the sense that d(vk−1) − d(v2) � d(v2),
with high probability. In other words, all “internal vertices”
v2, . . . , vk−1 have relatively equal distance from the source
(and the sink). Intuitively, the Delta Lemma holds because
there are a quadratic number of “internal” edges (edges with
endpoints vi, vj , 2 ≤ i, j,≤ k−1) but only a linear number of
edges incident to the source and sink. We can thus regard G
as essentially two sets of parallel links with a small latency
of δ = d(vk−1) − d(v2) associated to the center node (with
respect to the flow at Nash equilibrium). See Figure 2.

Figure 2: The “Delta Lemma”. With high probabil-
ity, a random network essentially behaves like two
sets of parallel links with a small latency of δ asso-
ciated to the center node (with respect to a flow at
Nash equilibrium).

Next, for each of the two sets of parallel links, partition the
links into the following three groups. First are the edges with
a latency function with a constant term (b-coefficient) that
is at least a parameter β1 > d(v2) + δ and an a-coefficient
that is at most a parameter α1; by Proposition 2.2 and the
definition of δ, these edges carry no flow in the Nash flow
of G. Second are the edges with a latency function with a
constant term that is at most a constant β2 that is signifi-
cantly smaller than d(v2) and an a-coefficient that is at least
a parameter α2. Edges in these two groups are analogous to
the edges with the latency functions �(x) = 1 and �(x) = x
in Figure 1, respectively. Third are the remaining edges.
Figure 3 shows the network G following this partitioning;
edges not relevant to our proof are omitted.

The next step, which is the most delicate step in the proof,
is to define an appropriate subnetwork G′ in which the Nash
flow has smaller latency than in the original network G. In-
tuitively, we obtain G′ by deleting edges from G in order
to pair up the (unused) edges with latency function roughly
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Figure 3: The network G following the Delta Lemma
and the partitioning of edges according to the coeffi-
cients of their latency functions. Edges that are not
relevant for our arguments are omitted.

α1x+β1 with those with latency function roughly α2x+β2.
These edge deletions are analogous to the removal of the in-
ternal edge in Figure 1; see Figure 4. While the obvious hope
is that removing these edges will result in a network with
an improved flow at Nash equilibrium, this is not intuitively
clear. On the one hand, traffic is now distributed over more
paths, as in the improvement for the four-node network of
Figure 1. On the other hand, we have accomplished this by
selectively pairing previously unused edges with previously
used edges, which in general destroys some s-t paths that
contained only edges with small b-coefficients and that car-
ried a significant amount of traffic. Proving that the edge
removals result in a superior Nash flow thus requires a care-
ful analysis that compares the benefit of employing a larger
number of flow paths with the cost that many of these paths
may contain edges with larger b-coefficients than those of the
edges used by the Nash flow in the original network.

Figure 4: The network G′ obtained from G by delet-
ing all “cross edges”.

In Sections 4 and 5, we prove that the above intuitive
explanation for the presence of Braess’s Paradox can be for-
malized to give constant factor expected improvements in
natural random network models.

In summary, our high-level proof approach decomposes
into the following four main steps (after the choice of an
appropriate traffic rate).

(1) We identify a set of “good properties” and show that
our networks satisfy these properties with high prob-
ability. These properties ensure that we are not deal-
ing with anomalous instances of our random network
model.

(2) [Delta Lemma] In the notation above, we prove that
d(v2) ≈ d(vk−1), and thus we may regard the entire
interior section of our network as a single node with
some small latency δ associated with it. We also prove
an analogous result for the network G′ (obtained from
G via edge removals as above).

(3) [Balance Lemma] We will prove that the Nash flows
in G and G′ are relatively symmetric. Specifically,
we show that d(v2) ≈ d(vk) − d(vk−1). Viewing our
network as in Figure 2, the latency of the Nash flow
is thus equally balanced between the left and right
halves.

(4) Finally, we evaluate the latency of traffic in Nash flows
in G and G′, and show that the increased number of
flow paths more than compensates for the decrease
in flow along edges that were used in G and are now
paired with costly edges in G′.

4. THE INDEPENDENT COEFFICIENTS
MODEL

In this section, we apply the proof approach of Section 3 to
the independent coefficients model of Subsection 2.2. After
discussing preliminaries in Subsection 4.1, Subsections 4.2–
4.5 formalize the four steps of this proof approach in turn.

4.1 Preliminaries
As discussed in Subsection 2.2, we assume that the under-

lying graph G is drawn from G(n, p) with p = Ω(n−1/2+ε) for
some ε > 0 and that each edge latency function has the form
�(x) = ax+b where a and b are drawn (independently) from
distributions A and B. We impose some mild restrictions on
A and B, as follows.

Let a and b be random variables chosen from distributions
A and B, respectively. The distributions A,B are reasonable
if: (1) there is a constant A0 > 0 such that Pr(a < A0) = 0;
(2) there is a constant Amax > 0 such that Pr(a > Amax) =
0; (3) there exists some interval, of length LA > 0, with
left endpoint AL such that for any ε > 0, and any L < LA,
P r(AL+L < a < AL+L+ε) > 0; and (4) there is a constant
LB > 0 such that for all ε > 0, and all L, 0 ≤ L < LB ,
Pr(L < b < L + ε) > 0.

The first assumption states that a-coefficients should be
bounded away from 0. This assumption is necessary as with-
out it, a random network is likely to contain an s-t path with
essentially zero latency. In this case, Braess’s Paradox will
not occur. The second assumption states that a-coefficients
should be bounded above by some constant; the third states
that a-coefficients should be at least somewhat dense in some
finite interval. All of these technical assumptions are quite
weak. The last assumption states that b-coefficients should
be somewhat dense near 0; while this is a stronger assump-
tion than the previous three, it is still satisfied by most nat-
ural continuous distributions. In Section 6 we discuss the
extent to which this assumption can be relaxed.

Our main result for the independent coefficients model is
the following.
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Figure 5: The parameters associated with the dis-
tributions A and B.

Theorem 4.1 Let A and B be reasonable distributions. There
is a constant ρ = ρ(A,B) > 1 such that, with high probabil-
ity, a random network (G, �) admits a choice of traffic rate r
such that the Braess ratio of the instance (G, r, �) is at least
ρ.

4.2 Properties of G

We now implement the first step of the proof approach
and state several properties of a random network that hold
with high probability. Throughout this subsection, we fix
reasonable distributions A and B and a sufficiently large
value of n.

We begin by introducing some additional parameters. Re-
call the meaning of the constants A0, Amax, LA, AL, and LB

from the definition of reasonable distributions. Let εA � LA

be a sufficiently small constant. Define A1 = AL + εA,
A2 = AL + LA − εA, and A3 = AL + L1. Define B3 = LB/2
and choose B1 > 0 smaller than [B3(LA − 3εA)]/[2(A1 +
A3) + 3(LA − 3εA)]. Let B2 denote B3 − B1.

For fixed τ, γ > 0, we now list four properties that might
or might not be satisfied by a random network G. All of
these properties essentially state that a simple random vari-
able takes on a value reasonably close to its expectation.

(P1) There are at least (np · Pr[b < B2/3])/8 edge-disjoint
3-hop paths between s and t that comprise only edges
with b-coefficients less that B2/3.

(P2) For every pair of nodes v1, v2, at least (np2 · Pr[b <
γ]2)/2 other nodes w are neighbors of both v1 and
v2, where the edges (v1, w) and (v2, w) each possess a
latency function with b-coefficient at most γ.

(P3) For nonnegative integers i and j, let pi,j denote the
probability that the a- and b-coefficients of a random
latency function lie in the intervals Ii = [iτ, (i + 1)τ ]
and Ij = [jτ, (j + 1)τ ], respectively. Then for all pairs
i, j with jτ ≤ 2B2, and for each w ∈ {s, t}, the number
of edges incident to w with a- and b-coefficients in Ii

and Ij , respectively, lies in [pi,j(np−(np)2/3), pi,j(np+

(np)2/3)].

(P4) For each w ∈ {s, t}, the number of edges incident to
w with b-coefficient less than B3 is at least np(1 −
(np)−1/3) · Pr[b < B3]/2. Moreover, the total number

of edges incident to w is at most np(1 + (np)−1/3).

To define the subnetwork G′ of G, we group the vertices
of G into sets according to the a- and b-coefficients on the
edges connecting them to the source and sink (if any). To-
ward this end, for a node v ∈ V \{s, t}, let as(v)x+bs(v) and
at(v)x+bt(v) denote the latency functions of the edges (s, v)
and (v, t), respectively. (We will usually suppress the depen-
dence on v in our notation.) If one or both of these edges

Figure 6: Depiction of the subnetwork G′.

are absent from G, we define the corresponding coefficients
to be +∞.

Now group vertices as follows. First assign vertices with
as < A1 and bs ∈ (B2, B3) to the set S1, and with at < A1

and bt ∈ (B2, B3) to the set T1. Vertices with as ∈ (A2, A3)
and bs < B1 are assigned to the set S2, and those with at ∈
(A2, A3) and bt < B1 are assigned to the set T2. Vertices in
S1 ∩ T1 or S2 ∩ T2 are removed from both sets and placed
in a “catch-all” set U . We also evacuate vertices from the
largest three sets among S1, S2, T1, T2 to U until the four
sets have equal size.

Vertices v with bs, bt > B3 are distributed evenly among
three sets Q1, Q2, Q3, using (for example) a predetermined
lexicographic rule. Finally, all remaining nodes other than
s and t are placed in U . Note that, by construction, all of
these sets are pairwise disjoint except possibly for the pairs
S1, T2 and S2, T1.

Obtain the subnetwork G′ or G by retaining only the edges
whose endpoints satisfy one of the following conditions:

1. one is the source or sink, the other is not in Qi (any
i = 1, 2, 3);

2. each is in a different set from among S1, T2, or Q1;

3. each is in a different set from among S2, T1, or Q2;

4. both are in Q3 ∪ U .

The resulting subnetwork G′ is depicted in Figure 6. We
now state our remaining three desired properties. Recall
that γ, τ > 0 are arbitrary fixed constants.

(P5) Let q1 = Pr[a < A1, B2 < b < B3], q2 = Pr[A2 <
a < A3, b < B1], and q = min{q1 − q2

1 , q2 − q2
2}. Then

the common size of S1, S2, T1, T2 lies in [npq/2, np].
Additionally, the common size of each Qi is at least
(n · Pr[b > B3]

2)/6.

(P6) Let v1, v2 be a pair of nodes that both lie in S1 ∪ T2,
in S2 ∪ T1, or in U ∪ {s, t}. Then the number of other
nodes w of Q1, of Q2, or of Q3, respectively, for which
the edges (v1, w) and (v2, w) both possess a latency
function with b-coefficient less than γ is at least (np2 ·
Pr[b > B3]

2 Pr[b < γ]2)/12.
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(P7) Define intervals as in property (P3). For nonnega-
tive integers i, j, let hi,j,s and hi,j,t denote the num-
ber of edges incident to s or t, respectively, that are
also incident to a vertex of U , and that have a- and
b-coefficients in the intervals Ii and Ij , respectively.
Then for all i, j, |hi,j,s − hi,j,t| ≤ (pn)2/3.

We call a network satisfying (P1)–(P7) good.

Lemma 4.2 For reasonable distributions A, B and fixed con-
stants γ, τ > 0, a random n-node graph G is good with prob-
ability approaching 1 as n → ∞.

The proof of Lemma 4.2 is a relatively straightforward
application of Chernoff bounds, and we omit the details from
this extended abstract.

Recall from Definition 2.1 that all flow paths of a Nash
flow in an instance (G, r, �) have equal latency L(G, r, �).
Given a good network (G, �), we will choose the traffic rate
R so that L(G, R, �) = 2B2. Since a-coefficients are bounded
away from zero, Proposition 2.3 implies that such a traffic
rate must exist. The next lemma shows that, even though R
is defined implicitly, we can accurately predict its magni-
tude.

Lemma 4.3 Let (G, �) be a good network and let R be a
traffic rate such that L(G, R, �) = 2B2. Then,

B2np Pr[b < B2/3]

48Amax
≤ R ≤ 2B2np(1 + (np)−1/3)

A0
. (1)

Proof. The upper bound follows easily from the second
part of property (P4) and the definition of A0. For the
lower bound, recall that property (P1) states that there are
at least κ = (np · Pr[b < B2/3])/8 edge-disjoint 3-hop paths
between s and t that comprise only edges with b-coefficients
less that B2/3. Splitting r units of traffic evenly between
these paths yields a flow in which all traffic experiences at
most 3(Amaxr/κ+B2/3) latency. Since the price of anarchy
in networks with linear latency functions is 4/3 [30] and G is
a single-commodity network, the common latency L(G, r, �)
of a Nash flow in (G, r, �) is at most 4(Amaxr/κ + B2/3).
Since this is strictly less than 2B2 when r < B2κ/6Amax,
the proof is complete.

Remark 4.4 As we have previously noted, we assume that
the graph and edge latency functions are random while the
traffic rate is adversarially chosen. One could also consider
a random traffic rate (according to some distribution), but
there is healthy evidence that Braess’s Paradox is unlikely
to occur across a wide range of traffic rates (see [15, 26]).
It therefore seems essential for any result similar to The-
orem 4.1 that the traffic rate is carefully chosen. On the
other hand, our proof does allow for a certain amount of
variability in the traffic rate (to a degree depending on the
distributions A, B).

4.3 The Delta Lemma
Next we prove the Delta Lemma, which states that the

“internal nodes” of a good network are all of roughly the
same distance from the source s.

Lemma 4.5 (Delta Lemma) Let γ > 0 be a fixed con-
stant and (G, �) a sufficiently large good network. Define

R as in Lemma 4.3 and let f be a Nash flow for (G, R, �).
Define s = v1, v2, . . . , vk = t as in Section 3. Then

d(vk−1) − d(v2) ≤ 16AmaxB2

A0np2(Pr[b < γ])2
+ 2γ

Proof. First, since no edges have zero latency, Proposi-
tion 2.2 implies that all flow of f that enters v2 and exits
vk−1 arrives directly from s and departs directly for t, re-
spectively. Thus the total amount of flow through either v2

or vk−1 is at most 2B2/A0. Next, let κ denote the number of
two-hop v2-vk−1 paths whose edges both have b-coefficients
at most γ. By property (P2) of good networks, κ ≥ (np2 ·
Pr[b < γ]2)/2. By an averaging argument, both edges on
one of these paths each carry at most 4B2/κA0 units of
flow. The latency of each of these edges (with respect to f)
is therefore at most γ+4B2Amax/κA0; Proposition 2.2 then
implies that d(vk−1)− d(v2) ≤ 2γ + 8B2Amax/κA0, proving
the lemma.

Since p = Ω(n−(1/2)+ε), Lemma 4.5 can be coarsely sum-
marized as: for every pair v, w ∈ {v2, . . . , vk−1}, |d(w) −
d(v)| ≤ 2γ + o(1). A similar argument using properties (P5)
and (P6) of good networks (that we omit) proves the follow-
ing analogue of the Delta Lemma for the subnetwork G′.

Lemma 4.6 (Delta Lemma for G′) Let γ > 0 be a fixed
constant and (G, �) a sufficiently large good network. Define
R as in Lemma 4.3 and the subnetwork G′ as in Subsec-
tion 4.2. Let f be a Nash flow for (G′, R, �), and let d′(v)
denote the length (w.r.t. edge lengths �e(fe)) of a shortest
s-v path in G′. Let v, w denote two vertices that both lie in
S1∪T2, in S2∪T1, or in U . Then |d′(v)−d′(w)| ≤ 2γ+o(1).

4.4 The Balance Lemma
Next we prove the Balance Lemma, which states that the

latency along Nash flow paths in G is equally split between
the two “halves” of the network.

Lemma 4.7 (Balance Lemma) Let γ, τ > 0 be fixed con-
stants and (G, �) a sufficiently large good network. Define R
as in Lemma 4.3 and let f be a Nash flow for (G, R, �).
Define s = v1, v2, . . . , vk = t as in Section 3. Let δ =
d(vk−1) − d(v2). Then for all i ∈ {2, . . . , k − 1},

|B2 − d(vi)| ≤ 4(np)2/3B2

N
+

τ (B2 + δ)

2A0
+ δ, (2)

where N = C(np− (np)2/3) and C = C(A,B) is a constant.

The proof of the Balance Lemma requires the following
lemma, which argues that all edges incident to s or t with
sufficiently small b-coefficients carry traffic in a Nash flow.

Lemma 4.8 With the same assumptions and notation as
Lemma 4.7, let d(v2) = B2−σ and assume that σ > 2(δ+γ).
Then every edge incident to s with b-coefficient less than
B2 − σ − δ − γ carries traffic in the Nash flow f , and every
edge incident to t with b-coefficient less than B2 + σ − δ − γ
carries traffic in f .

Proof. We prove only the first assertion; the second fol-
lows from a similar argument. Let (s, v) be an edge with
b-coefficient less than B2 − σ − δ − γ. By Property (P2) of
good networks, there is a path P = s → v → w → t in
which the second two edges have b-coefficients at most γ.
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First, observe that edge (v, w) has latency at most γ if it
carries no flow. By Proposition 2.2 and the definition of δ, it
has latency at most δ if it does carry flow. Next, recall that
the traffic rate R is chosen so that L(G, R, �) = d(t) = 2B2.
Proposition 2.2 and the definition of σ imply that when the
edge (w, t) carries flow, it must have latency at most B2 +σ.
If edge (w, t) carries no flow, then it has latency at most
γ < B2 + σ. In all cases, the combined latency of the edges
(v, w) and (w, t) (with respect to f) is at most B2+σ+δ+γ.
Since the combined latency of the path P is at least 2B2 with
respect to f and the b-coefficient of edge (s, v) is less than
B2 − σ − δ − γ, it must carry traffic in f .

We now prove the Balance Lemma.

Proof of Lemma 4.7: Since d(v2) ≤ · · · ≤ d(vk−1), it
suffices to show that B2−d(v2) and d(vk−1)−B2 are both at
most the right-hand side of (2). We only prove the former
inequality; the other case is symmetric (using an obvious
variant on Lemma 4.8).

Let Rmin denote the left-hand side of (1). Let κ denote

the number of edges incident to s; κ ≤ np(1 + (np)−1/3)
by Property (P4). Since all a-coefficients are at least A0,
the minimum cost of a flow-carrying edge of G is at least
A0Rmin/κ. For n sufficiently large, this is greater than the
constant c = A0B2 Pr[b < B2/3]/96Amax. Assume that τ is
a sufficiently small constant, less than c/2.

For n sufficiently large, property (P3) guarantees that

there are at least N := Pr[b < c/2](np − (np)2/3) edges
incident to the source with b-coefficient less than c/2. From
Lemma 4.8, for every δ, γ < c/4, all of these edge carry flow.
By a similar argument, there are also be at least N edges
carrying flow to the sink.

Define σ by d(v2) = B2−σ. By the Delta Lemma (Lemma 4.5),
every flow-carrying edge out of s has latency at most B2 −
σ + δ, while every flow-carrying edge into t has latency at
least B2 + σ − δ.

Define the interval Ii to be [iτ, (i + 1)τ ]. We say that an
edge e has type (i, j) if the a- and b-coefficients of its latency
functions lie in Ii and Ij , respectively. A type-(i, j) flow-
carrying edge out of s carries at most (B2 − σ + δ − jτ )/iτ
flow, while a type-(i, j) flow-carrying edge into t carries at
least (B2 +σ−δ−(j +1)τ )/(i+1)τ flow. By Property (P3),
for all types (i, j), there are nearly the same number of type-
(i, j) edges incident to each of s and t. As argued above, all
such edges carry flow when the interval Ij contains only b-
coefficients that are at most c/2.

Calculating the difference between the upper bound of
flow leaving the source and the lower bound of flow entering
the sink, requiring that this difference be nonnegative, and
some algebra yields the inequality

Nτ (B2 + δ)

A2
0

+
2N(δ − σ)

A0
+ F1 + F2 ≥ 0,

where F1 is the error term corresponding to the variance
in property (P3), and F2 corresponds to flow using edges
incident to the source with a b-coefficient that is at least
B2 − σ − δ − γ − τ .

The term F1 is bounded above by 4(np)2/3B2/A0, since
every edge incident to s has latency at most 2B2. The term
F2 is also bounded by this quantity, because all edges inci-
dent to the sink with b-coefficients less than B2 + σ − δ − γ
carry positive flow, and this is at least B2 −σ + δ + τ , which

is the maximum value of a b-coefficient of a flow-carrying
edge out of the source.

Plugging these values into the inequality, and solving for
σ shows the desired result.

The following similar result holds for the subnetwork G′

(formal statement and proof omitted). Define the shortest-
path distance d′(v) of v in G′ as in Lemma 4.6. Let v2 and
vk−1 be the vertices of U with minimum and maximum d′-
values, respectively. Then, choosing τ sufficiently small, for
n sufficiently large, and assuming that (G, �) is a good net-
work, both L(G′, R, �)/2−d′(v2) and d′(vk−1)−L(G′, R, �)/2
can be made arbitrarily close to δ.

4.5 Proof of Theorem 4.1
We now outline how the above lemmas fit together to

prove Theorem 4.1. For any fixed δ > 0, we can pick n
sufficiently large so that for good networks with at least n
nodes, for the traffic rate R chosen as in Lemma 4.3, the
Delta Lemmas imply that the maximum cost of travel be-
tween internal nodes is δ, and the Balance Lemmas imply
that the two ‘halves’ of G and U are balanced to within a
cost of δ.

The key idea is to fix a constant μ > 0, assume that the
cost along Nash flow paths of G′ is 2B2(1 − μ), and upper
bound on the traffic rate R′. We will show that for μ > 0
sufficiently small, R′ > R. Theorem 4.1 will then follow
from Proposition 2.3.

Proof of Theorem 4.1: Edges not in U will each carry
at most (B2μ + 2δ)/A0 less flow in G′ than in G, and thus
these edges account for at most a discrepancy between R′

and R of

F1 = 2np
B2μ + 2δ

A0
.

Define c = |S1|/np. Property (P5) implies that q/2 ≤ c ≤
1. The edges in S1 will each carry at most δ/A0 units of
flow in G. This accounts for at most

F2 = cnp
δ

A0

of the flow in G.
The edges in S2 will each carry at most (B2 + δ)/A2 units

of flow in G. This accounts for at most

F3 = cnp
B2 + δ

A2

of the flow in G.
Now we consider the flow through Si and Ti in G′. Let

r1 be the minimum flow that travels along an edge of S1

in G′, and let r2 be the minimum flow that travels along
an edge of T2 in G′. From the definition of G′, the total
flow along the S1, T2 paths must be at least cnp max{r1, r2}.
Furthermore, from the Delta Lemma (Lemma 4.5) we have
that r1A1+B3+r2A3+B1+δ ≥ 2B2(1−μ). This inequality
must also hold if we replace r1 and r2 by r = max{r1, r2}.
Solving for r, we get r ≥ (2B2(1−μ)−B1−B3−δ)/(A1+A3).
Thus the total flow along both the S1, T2 paths, and the
S2, T1 paths in G′ must be at least

F4 = 2cnpr ≥ 2cnp
2B2(1 − μ) − B1 − B3 − δ

A1 + A3
.
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Summing up the above quantities we obtain

R′ − R ≥ F4 − F1 − F2 − F3

≥ cnp

„
2(2B2 − B1 − B3)

A1 + A3
− B2

A2

«

−μcnp

„
4cB2

A1 + A3
+

2B2

A0

«
(3)

−δcnp

„
2c

A1 + A3
+

4 + c

A0
+

c

A2

«
.

The parameters Ai, Bi were chosen in Subsection 4.1 so
that the first term in inequality (3) is strictly positive. Thus
for δ small enough (and n large enough), there is a choice
of μ > 0 such that R′ > R. Combining this with Proposi-
tion 2.3 implies Theorem 4.1.

5. THE 1/X MODEL
We next prove an analogue of Theorem 4.1 for the 1/x

model (see Subsection 2.2). By a random network from
G(n, p, q), we mean a random graph G from the distribution
G(n, p) for which each edge of G is independently given the
latency function �(x) = x with probability q and the latency
function �(x) = 1 with probability 1 − q.

Theorem 5.1 There is a traffic rate R = R(n, p, q) such
that, with high probability as n → ∞, the Braess ratio of a
random n-node network from G(n, p, q) with traffic rate R is
at least

4 − 3pq

3 − 2pq
.

Remark 5.2 Note for small values of p and q, the Braess
ratio in Theorem 5.1 approaches 4/3, the worst-case bound
for Braess paradox given linear latency functions [28, 30].

6. EXTENSIONS
We conclude by discussing how to relax the requirement

that the B distribution is dense near zero, and also consider
the possibility of extending the main theorem to the case
where p = o(1/

√
n).

The condition that the B distribution is dense near 0
can be weakened. From inequality (3) it follows that there
is some constant C = C(A,B) such that if δ is bounded
above by C, then the Braess ratio of random network will
be bounded away from 1 with high probability as n → ∞.
Provided the distribution B is sufficiently dense near a con-
stant B0 < C/2, we can rework our main proof to show that
Theorem 4.1 still holds.

We believe, but have not verified, that our results and
proof techniques can be extended to the G(n, p) random
graph model with smaller values of p. The key technical
challenge is to extend properties (P1) and (P2) of good
networks—which state that various pairs of vertices are highly
connected using short paths—to sparser random graphs. As
the network becomes increasingly sparse, longer paths must
be used to achieve the desired degree of connectivity, which
in turn leads to several technical complications.

Finally, we suspect that further extensions to other ran-
dom graph and latency function models are possible, but
leave this for future work.
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